
 1

A Reference Model for Distributed User Interfaces
Alexandre Demeure, Gaëlle Calvary, Jean-

Sébastien Sottet
CLIPS-IMAG

BP53
38041 Grenoble Cedex 9, France

{alexandre.demeure, gaelle.calvary}@imag.fr

Jean Vanderdonkt
School of Management (IAG)

Catholic University of Louvain Place des Doyens,
1, B-1348 Louvain-la-Neuve, Belgium

vanderdonckt@isys.ucl.ac.be

ABSTRACT
This paper proposes a reference model for reasoning about
different types of distributed User Interfaces (UI):
mouldable, distributable, and migratable UIs. The reference
model explicitly captures concepts subject to distribution at
different levels of abstraction (tasks, concepts, abstract UI,
concrete UI, and deployed UI) so as to provide designers
with some guidance on deciding how to distribute the UI.
Some significant types of distributed UI are uniformly
expressed according to the reference model.

Author Keywords
Plasticity, .

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
With ubiquitous computing, User Interfaces (UI) are no
longer confined in a unique desktop. Instead, they may be
distributed and migrate across a dynamic set of interaction
resources that are opportunistically composed, borrowed
and lent. As a consequence of distribution and migration,
UIs must be mouldable in order to adapt gracefully to
changes of the interactive space. Typically, in [14], when
the user “picks” graphical tables and chairs on a vertical
surface and drops them on a horizontal surface, then the
rendering of the furniture switches from a 3-D to a 2-D
representation. Today, mouldable, distributed and
migratable (MDM) UIs are studied under the umbrella of
plasticity [1]. But there is still no clear definition of the
moulding, distribution and migration phenomena. Many
terms appear, stressing the feeling of an ontological

confusion: for instance, migratory UIs [1, 3], mutable [13],
transformable [7], reconfigurable [6], retargetable UIs [4],
composition and decomposition [18].
In addition to that confusion, a need exists for consolidating
this very recent branch of research dedicated to plastic UIs.
Whilst a reference framework provides a sound basis for
reasoning about plasticity at design time [4], there is no tool
for characterizing and comparing systems at run time.
Typically, considering the distribution criteria, several
systems exist such as I-AM [5], i-Land [16], Stanford
Interactive Mural [8], Aura [15], ConnecTables [17, 18],
Dygimes [18], DistriXML [7]. But so far, no state of the art
of these systems has been conducted and no reference
framework has been proposed to better perceive the
differences between these terms and systems.

This paper proposes a reference model for reasoning about
distributed UIs. It is based on A Meta-model of Interactive
systems (AMIS) that describes an interactive system at
different levels of abstraction ranging from tasks to
deployment. AMIS is described in section 2. As explained
in section 3, it provides a sound basis for reasoning about
distribution. Some examples of functions and properties are
elicited to characterize existing approaches in section 4.
Further work includes the standardization of definitions
(moulding, distribution and migration) based on AMIS
(Sect. 5).

AMIS: A META-MODEL OF INTERACTIVE SYSTEMS
AMIS is a meta-model of interactive systems for describing
the morphology of an interactive system at different levels
of abstraction, ranging from the user tasks to its
deployment. AMIS is a graph made of the physical and
digital entities that are required for the definition and
execution of the interactive system.
The physical entities (PhysicalEntity on Fig. 1) encompass
the computing resources (CPU), output devices (called
Outputers on Fig. 1, e.g, screens, loudspeakers) and input
devices (called Inputers on Fig 1., e.g. keyboards, mice,
cameras)) that are required for the execution of the
interactive system.

The digital entities (DigitalEntity on Fig. 1) embody both
the “components” of the interactive system and their

 2

mapping on the outputers (for their rendering) and inputers
(for the user interaction). The “components” of an
interactive system refer to either its functional core
(DigitalFunctionalCore) or UI (DigitalUserInterface), both
of them being connected through a connector
(MappingUIFC). All of these elements (functional cores,
UIs and mappings) are kinds of digital entities. Digital
entities, inputers and outputers are managed by CPUs.

Space is a key notion in both the physical and digital
worlds. It basically defines a coordinates space according to
the mathematical meaning. Typically, a digital window
defines a 2-D digital space which origin may be its top-left
corner, and which axis x and y may be oriented to the right

and bottom directions. Spaces may be confined inside
boundaries, as a result defining zones. Typically, in Human-
Computer Interaction (HCI), workspaces (also called
interaction spaces or presentation units) are digital zones
(DigitalZone) in which the interaction is supposed to take
place. Symmetrically, outputers define physical zones
(PhysicalZone). For instance, a screen may be seen as a
parallelepiped which length, high and depth may be
expressed in inches.

Fig. 1 presents an UML class diagram gathering the
concepts that have been introduced. AMIS is based on these
concepts.

Figure 1 : Basic concepts useful for meta-modeling the reference model. Left side is about the digital entities, right side about the
physical entities and the middle about conceptual entities. The far right side focuses on the mappings, making explicit the entities

they are based on.

AMIS is a graph which:
• nodes are the physical and digital entities useful for the

definition and execution of the interactive system. For a
better legibility, we propose graphical notations (i.e., a
concrete syntax) for differentiating entities: functional
cores, UIs and mappings are respectively depicted by
octagons , ovals and cylinders . Outputers
are represented by flat screens, inputers by keyboards or
mice, CPUs by a surrounding box and other physical
nodes by rectangles.

• the relations may be of different types: “managed by” for
expressing the fact that a digital entity (DE) is managed
by a CPU (in that case, the DEs are represented inside a
colored box denoting the CPU) ; “is defined with respect
to” for expressing the fact that a space A is defined with

respect to a space B (A B) ; “is functionally dependent
of” for expressing the fact that a DE is functionally
dependent of another one (dependentEntity
referenceEntity) ; “is mapped on” for expressing the fact
that a DE is mapped on an other DE

(
Mapping

) ; “is replicated” for conveying

multiple instanciations of a same DE (
Numeric

Entity
Numeric

Entity).

This meta-model is instantiated in Fig. 2, on the CamNote
case study. CamNote is a powerpoint-like software made of
a slides viewer and a controller. The controller is able to run
both on PC and PDA. PDA is an interesting option for

controlling the presentation in a remote way. The graph of
CamNote is modeled in two configurations: (a) the slides
viewer and the controller on a same PC; (b) the slides
viewer on PC and the controller on PDA.
• In both configurations, the functional core is made of two

parts: the slides viewer (Viewer) and the remote
controller (RemoteController FC). The RemoteController
FC is either managed by the PC (a) or the PDA (b),

• The functional cores and their UIs are linked together
through mappings (Map_UI_FC),

• In a), the desktop PC (Root) contains the slides viewer
and the remote controller UIs. The desktop (root) is
directly mapped on the PC screen: as a result, both of the
components (slides viewer and remote controller) are
displayed on the PC screen. In b), the desktop PC is
limited to the slides viewer UI (Viewer), the remote
controller UI being mapped on the PDA screen. As a
result, the slides viewer appears on PC, whilst the remote
controller is displayed on PDA.

• In b), PC and PDA are connected through a network.

(a)

 3

(b)

Figure 2 : The graph of CamNote when (a) both the slides
viewer and the remote controller run on PC; (b) the slides

viewer runs on PC whilst the remote controller runs on PDA.
The models are instance diagrams of the class diagram

presented in Fig. 1. The proposed graphical notations are used
to improve the diagram legibility.

In practice, the INTERACTIVE SYSTEM can be analyzed
in a finer way. Considering the UIs, the desktop may be
seen as a digital space in which the content of the UIs is
expressed.

Infos

Infos

Figure 3 : The reference model is a powerful notion for
reasoning about distribution. The way the UI is mapped on

outputers defines the locations where the UI appears.

In Fig 3. the UI is made of a unique window (A Window)
structured into two workspaces: “WS Slide” for the slides
presentation and “WS Infos” for a notes editor. Recursively,
WS Slide and WS Infos define digital spaces for expressing
their content. They are expressed with regard to the window
digital space. In Fig. 3, WS Slide is limited to an image,
whilst WS Infos contains labels and text boxes for editing
both the current date and few comments. The mapping on
outputers defines the “location” where the UI is displayed.
In Fig. 3, the full desktop is projected on screen1 (CamNote
plus other applications); the slides viewer is displayed on
screen 2 whilst the notes editor appears on screen 3.

Next section introduces a set of functions and properties
that make operational this notion of reference model.

FUNCTIONS AND PROPERTIES
Many functions and properties may be introduced based on
the reference model. In this paper, we focus on the
functions and properties that are powerful for reasoning
about MDM UIs. Functions and properties are defined, then
“formalized” according to a pseudo-Z notation. They may
be useful for defining distribution or migration whilst some
are of general interest. This criteria is used for structuring
the section.

Functions of general interest
A useful notion for MDM UIs is the notion of location.
Informally, the location of a digital entity expresses its
embodiment in terms of physical and digital entities. More
formally, the location of a digital entity e is the set of
quadruples <CPU, smo: set of MappingUI-O, smi: set of
MappingUI-I; p: path of DigitalEntity > where:
• p is a path in the graph going from e to CPU,
• smo is the set of mappings to outputers involved in p,
• smi is the set of mappings to inputers involved in p,
• CPU is the CPU managing p.

For instance, let us consider the “TextBox Date” in Fig. 3.
Its location is based on a unique path p made of the
following digital entities: TextBox Date-WS Date-WS
Infos-A Window-Desktop-Root. Two mappings are
involved (on screens 1 and 3) giving rise to the following
location: {<CPU, {mapping screen 1, mapping screen 3},
{}, p>}. From now on, to make a clear distinction between
a quadruple and the set of quadruples, a quadruple will be
said elementaryLocation.
Location is a powerful notion for reasoning in HCI.
Typically, if the set of mappings on outputers is empty, then
the entity can not be observable [10]. "Let us formally
define some functions of general interest. They apply on a
graph.

• Replicas(e: DigitalEntity) computes the set of digital
entities that replicate the entity e: {j: DigitalEntity |
Replicas (e, j)∨Replicas (j, e) } where Replicas(i, j) is
true if I is a replicas of j.,

• Locations(sui : set of UIs) computes the set of locations
of sui.

• GetOutputers(sui: set of UI) computes the set of
outputers where sui could be rendered.
∪{l: Locations(sui) • l.smo}

• GetInputers(sui : set of UI) computes the set of
inputers that provide input to sui.
∪{l: Locations(sui) • l.smi}

• GetCPUs(sui : set of UI) computes the set of CPUs
managing one ui among sui at least.
{l: Locations(sui) • l.cpu}

• LocationsWhereUIsRendered(sui : set of UI) computes
the set of locations where sui is rendered.
{<cpu, smo, smi, p>: Locations(sui) | smo’⊂ smo ∧
(∀o:smo’•IsRenderedOn(p,o)) • <cpu,smo’,smi,p>}

• OutputersWhereUIsRendered(sui : set of UI) computes
the set of outputers where sui is rendered.
∪{l: LocationsWhereUIsRendered (sui) • l.smo}

• LocationsWhereTasksRendered(st : set of tasks)
computes the locations where st is rendered. It provides
a higher level of information about the interactive

 4

system.
sui = ∪{m: {mt:Map_Tasks-UI | m.st∩st≠∅}•m.sui}
→ LocationsWhereUIsRendered(sui)

Based on some of these functions, next sections introduces
a new function, valuable for reasoning about distribution

Useful functions for reasoning about distribution
Distribution has several meanings among which one is
about scattering. We define the Are_X_Scattered for
measuring the extent to which extent a set of digital UIs is
scattered according to an X criteria: CPU, screens, etc. The
degree of scattering may be null, weak, medium or strong.
Let us examine this range of values on an example (the
screen scattering) before providing general formalizations.

• Strong scattering means that there is no screen shared by
two digital UI,

• Medium scattering means that there is no digital UI using
exactly the same screens than another one,

• Weak scattering means that, at least, two digital UIs
differ in the screens they use.

For example, the set of entities “Image” and “Label
comments” on Fig. 3 is medium scattered. Indeed:

• Image is mapped on two outputers {screen 1, screen 2},
• Comments is mapped on two outputers {screen 1, screen

3},
• Screen 1 is shared by the two entities, scattering is not

strong.
More formally;
 Are_X_Scattered (sui: set of UI;
 fct: (set of X) f (sui: set of UI))
 ssx: set of <DigitalEntity, set of X> |
 ssx={ui: sui • <ui, fct({ui})>} • α where:

• sui is the set of digital UIs which scattering is studied.
For instance, { Image, Label comments },

• fct(sui) returns the set of X involved in the location of
sui. For instance, {screen 1, screen 2} for the ui Image
and X = “screen”,

• ssx is the set of couples <ui, getX(ui)>, obtained by
considering all the uis of sui. For instance, {<Image,
{screen 1, screen 2}>, <Label comments, {screen 2,
screen 3}>},

• α expresses the strength of the scattering. It may be:
o Strong: α ≡ (¬∃s1,s2: SSX | s1.sx∩s2.sx≠∅)
o Medium: α ≡ (¬∃s1,s2 : SSX | s1≠s2 • s1.sx=s2.sx)
o Weak: α ≡ (∃s1,s2 : SSX | s1.sx≠s2.sx).

Next section introduces functions and properties operating
on a set of reference models. These functions and properties
are useful for reasoning about migration.

Useful functions for reasoning about migration
Many functions and properties could be defined. As an
example, let us introduce the LeaveAndGet function that
elicits the elementary locations a digital entity leaves and
conversely gets when arriving in a new graph.
LeaveAndGet(sui: set of DigitalUI; G1, G2 : Graph)
returns a couple <lost, won> where lost and won
respectively denote the elementary locations the entity has
lost and won. More formally: L1: G1.location(sui), L2:
G2.location(sui)

<{l1: L1 | l1=<cpu1, sm1, w1>
 ∧ (¬∃l2: L2 | l2=<cpu1,sm2,w1>∧sm1⊆sm2)• l1}
, {l2: L2 | l2=<cpu2, sm2, w2>
 ∧ (¬∃l1: L1 | l1=<cpu2,sm1,w2>∧sm2⊆sm1)• l2}>.

Next section applies most of functions and properties on
case studies extracted from the literature.

ILLUSTRATIONS ON THE STATE OF THE ART
The state of the art is structured according to the what (UIs
or tasks) and where (CPU, outputers, UIs), the distribution
or migration is performed.

Distributing UIs on UIs
A typical example is multiple views. Multiple views refer to
the visualization of a UI on different UIs. Fig. 4 is an
example of an image factorized on two windows. This
notion can be formalized in the following way:

Is_UI_distributed_on_UIs (ui : UI)
 L : Locations(ui)
 → #L≠0

Label
1

 Window 1

 Window 2

Label
2

Figure 4 : Image is distributed on window 1 and window 2.

Migrating UIs on UIs
A typical example is the transfer of a part of the content of
a window to another window. Fig 5 illustrates the transition
of an image passing from window 1 to window 2. This
notion can be formalized in the following way:

 Migration (ui : UI; G1, G2 : graph)
 <leave, get> : LeaveAndGet({ui}, G1, G2)
 → (#leave≠0)∧(#get≠0)

 5

Label
1

 Window 1

 Window 2

Label

2

Label 1
 Window 1

 Window 2

Label
2

Figure 5 : Image migrate from window 1 to window 2.

Distributing UIs on outputers
A typical example is “multiple screens”. Multiple screens
refers to the addition of screens for extending the display
surface. The UI is not changed, but it can be mapped in
different ways. Fig. 6 models the availability of a second
screen. The mapping on this new outputer can be performed
in different ways, therefore providing different kinds (and
feelings) of distribution. Distributions may range from a
full replication (exactly, the same rendering on both
screens) to a strong scattering (one part of the UI on one
screen, the rest on the second one). If we mean by
distributed that a UI is rendered on different outputers then
this notion can be formalized in the following way:

 Distributed_UI_O(sui : set of UIs)
 → #OutputersWhereUIsRendered(sui) >1

Figure 6 : An example of graph involving multiple screens.

Migrating UIs on outputers
This can be understood in at least two ways; The UI
becomes renderable on another outputer or the UI becomes
rendered on another outputer. Let’s formalize the two
cases.

UI become displayable on another UI.
 Migration_UI_O_1(ui : UI ; G1, G2 : Graph)
 SO1 = G1.GetOutputers({ui})
 SO2 = G2.GetOutputers({ui})
 → <SO1 \ SO2 ; SO2 \ SO1>

UI become displayed on another UI.
 Migration_UI_O_2(ui : UI ; G1, G2 : Graph)
 SO1 = G1.OutputersWhereUIsRendered({ui})
 SO2 = G2.OutputersWhereUIsRendered({ui})
 → <SO1 \ SO2 ; SO2 \ SO1>

Distributing/Migrating UIs on CPUs
Typical cases of distributed/migrated Uis on CPUs are I-
AM and Beach

I-AM (Interaction Abstract Machine) [12] is a platform
manager for MDM UIs. It supports the dynamic
configuration of interaction resources to form a single
logical interactive space. These resources can be managed
by different elementary workstations running distinct
operating systems (i.e., MacOS X, Windows NT and XP).
Users can distribute and migrate user interfaces at the pixel
level as if these UIs were handled by a single computer.
This illusion of a unified space is provided at no extra cost
for the developer who can re-use the conventional GUI
programming paradigm.

The underlying principle of I-AM is to create the UI on an
I-AM server, and replicate it on each I-AM client. Fig. 7
makes this principle explicit thanks to the reference model.
The universe embeds a model of the topology of the
surfaces.

In I-AM, an UI is said distributed if it is displayed on at
least two surfaces managed by different CPUs. This can be
expressed by the following Distribution(ui: DigitalUI)
function. It returns the set of elementary locations of ui that
involve different CPUs. The UI will be said distributed if
this set is not empty.

 L=LocationsWhereUIRendered (ui))
 → ∃ l1, l2 : L | l1.cpu≠l2.cpu)

In I-AM, an UI is said to migrate when it leaves a set of
screens S1 to target a set of screens S2, such as S1∩S2=∅.
This can be expressed by the following:

Migration(ui1,ui2: DigitalUI; G1, G2: Graph)
 L1 = G1.LocationsWhereUIsRendered({ui1})
 L2 = G2.LocationsWhereUIsRendered({ui2})
 → (L1≠∅) ∧ (∀l2: L2 • ¬(∃l1 :L1| l1.cpu=l2.cpu))

Figure 7 : An I-AM characterization based on reference
model. The UI is created on a server (CPU2) and replicated on

each client (only one in the figure 1 - CPU 1).

Another example of UI distributed or migrated on CPUs is
given by Beach. Beach [16] has been developed in order to
support roomware application. In addition to a local object
space on each platform containing all non-distributed
object, Beach is based on COAST for the management of
shared objects. Fig. 8 characterizes Beach on the
Wall&Chair example. The Wall&Chair roomware is
composed of a wall-screen (DW for DynaWall) and a

 6

tablet-PC on a chair (CC). Both render the same application
but the tablet-PC also renders another one, making it
possible for the user to have a private space.

The distribution occurring in beach consists in the
replication of shared elements on a server. The distribution
is effective when a UI is replicated on different CPUs,
witch can be formalized by the following function
Distribution_Beach_UI_CPU (sui : set of UIs) :

 #getCPUs(sui) > 1

Figure 8 : Beach illustrated on the Wall&Chair case study.

Distributing Task on outputs/CPU
Knowing which tasks of an interactive system are supported
by which CPUs and/or outputers provides a high level of
knowledge of the deployment of the INTERACTIVE
SYSTEM [20]. An example is given in Fig 9: the task
model of a basic text editor is deployed on two CPUs. One
of them achieve the tool selection whilst the other one
achieves tool application and text edition. The task “Editing
textual document” is then distributed on this two CPUs.
Knowing weather a set of tasks is distributed on outputers
can be formalized in the following way:

AreTasksDistributedOnOutputers (st : set of Tasks)
 smUI = {m : MapTasksUI | (∃t : st | t∈m.Tasks) • m}
 sUI = ∪{m : smUI • m.UIs}
 so = ∪{ui : sUI • OutputersWhereUIsRendered({ui})}
 → #so > 1

Figure 9 : Tasks distributed on different computers.

Migrating tasks on another CPU/UI
A typical example of this kind of migration is Aura. In Aura
[15], the adaptation to the context of use is performed by
substituting one application (e.g., a text editor) by another
one. Fig. 10 provides an example based on a text editor.
The user edits a text using word on his work’s computer
(G1). He then decides to go back home. When arriving in
front of his home’s computer, the system launches emacs,
which is the equivalent software he has to perform text
edition (G2). We can notice that in G1 the task distribution
on the UIs is more precise than in G2. However the whole
task tree is mapped to UIs in both G1 and G2. Such a
migration of tasks from/to UI can be formalized in the
following way:

 MigrationAura(st: set of tasks; G1, G2: Graph)
 sm1 = {m: G1.sm | st∩m.st≠∅ • m}
 sm2 = {m: G2.sm | st∩m.st≠∅ • m}
 → {m1:sm1, m2:sm2 | m1.st=m2.st ∧
m1.sui≠m2.sui • <m1.st, m1.sui, m2.sui>}

This function returns a set of triples <st, sui1, sui2> where
st is the set of tasks being migrated form sui1 in G1 to sui2
in G2.

Figure 10 : The change of graph in Aura: Word is substituted
by Emacs.

 7

Distributing Inputs
Distributing inputs could mean several things. In I-AM,
“distributing inputs” means replicating every input on every
CPU. Thus it makes it possible to control a window of a
CPU with the mouse linked to another CPU.(Fig. 11)

Figure 11 : Exemple of distribution of inputs in IAM. Each
inputer is replicated on every CPU.

In Synergy, “distributing inputs” means that every input
device of the same type (e.g. mouse, keyboards…), controls
the same “logical input”. For example, this system makes it
possible to control the mouse cursor of a PC with a mouse
device connected to a MAC. PC cursor and MAC cursor are
superposed, giving thus the illusion that it is the same. (Fig
12.)

Figure 12 : Example of distribution in Synergy; Keyboard and
mouse devices are respectively connected to the same

conceptual keyboard and mouse driver.

Migrating Inputs
Migrating inputs can mean making possible for an input
device to act on a UI managed by another CPU than the one
managing the device. Fig. 13 shows an example. In G1, the
keyboard is managed by CPU1, and acts on Root 1 only. In
G2, by transferring the keyboard driver information to
Root1 and Root2, the keyboard migrates to CPU2.

Figure 13 : Exemple of a migration of a keyboard to another
computer

5 CONCLUSION AND PERSPECTIVES
This paper introduces a reference model as a powerful tool
for reasoning about different kinds of distributed UIs.
Based on a set of examples, it shows how this reference
framework could help in formalizing different kinds of
distribution and migration. The claim of the paper was not
to introduce new definitions, but to show how this notion
helps in characterizing existing systems, and envisioning
the problem space of MDM. One perspective of the work is
of course the standardization of the definitions.

ACKNOWLEDGMENTS
We thank the Network of Excellence SIMILAR for its
support.

REFERENCES
1. Balme, L, Demeure, A., Barralon, N., Coutaz, J., Calvary, G.

CAMELEON-RT: A Software Architecture Reference Model
for Distributed, Migratable, and Plastic User Interfaces,
Lecture Notes in Computer Science, Volume 3295 / 2004,
Ambient Intelligence: Second European Symposium, EUSAI
2004, Markopoulos P., Eggen B., Aarts E. et al. (Eds),
Springer-Verlag Heidelberg (Publisher), ISBN: 3-540-
23721-6, Eindhoven, The Netherlands, November 8-11,
(2004) 291-302

2. Bandelloni, R., Paternò, F.: Flexible Interface Migration. In:
Proceedings of ACM Con. On IUI’04 (Funchal). ACM Press,
New York (2004) 148–155

3. Bharat, K.A., Cardelli, L.: Migratory Applications
Distributed User Interfaces. In: Proc. of ACM Conf. on User
Interface Software Technology UIST’95. ACM Press (1995)
133–142

4. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., Vanderdonckt, J.: A Unifying Reference
Framework for Multi-Target User Interfaces. Interacting with
Computers 15, 3 (June 2003) 289–308

5. Coutaz, J., Balme, L., Lachenal, Ch., Barralon, N. Software
Infrastructure for Distributed Migratable User Interfaces. In:
Proc. of UbiHCISys Workshop on UbiComp (2003)

6. Grolaux, D., Van Roy, P., Vanderdonckt, J.: FlexClock, a
Plastic Clock Written in Oz with the QTk toolkit. In: Proc. of
1st Int. Workshop on Task Models and Diagrams for user
interface design TAMODIA’2002 (Bucharest, 18-19 July
2002). Academy of Economic Studies of Bucharest,
INFOREC Printing House, Bucharest (2002) 135–142

 8

7. Grolaux, D., Van Roy, P., Vanderdonckt, J.: Migratable User
Interfaces: Beyond Migratory User Interfaces. In: Proc. of 1st
IEEE-ACM Annual International Conference on Mobile and
Ubiquitous Systems: Net-working and Services
MOBIQUITOUS’04 (Boston, August 22-25, 2004). IEEE
Computer Society Press, Los Alamitos (2004) 422–430

8. Guimbretière, F., Stone, M., Winograd, T.: Fluid Interaction
with High-resolution Wall-size Displays. In: Proc. of ACM
Conf. on User Interface Software Technology UIST’2001

9. Han R., Perret V., Naghshineh M., WebSplitter: A Unified
XML Framework for Multi-Device Collaborative Web
Browsing, Appeared in ACM Conference on Computer
Supported Cooperative Work (CSCW) (2000)

10. IFIP BOOK: Design Principles for Interactive Software, Gram
C. and Cockton G. (eds), Chapman & Hall, (1996)

11. Lachenal, C., Rey, G., Barralon, N. MUSICAE, an
infrastructure for MUlti-Surface Interaction in Context
Aware Environment. In Proc. HCI International, Crète, June
(2003) 125-126

12. Lachenal, C.: Models and tools for multi-instrument and
multi-surface interaction, PhD thesis of the University
Joseph-Fourier, Grenoble I, Informatics (2004)

13. McKinley, P.K., Masoud Sadjadi, S., Kasten, E.P., Cheng,
B.H.C.: Composing Adaptive Software. IEEE Computer
(July 2004) 56–64

14. Rekimoto, J.: Pick and Drop: A Direct Manipulation
Technique for Multiple Computer Environments. In Proc. of
UIST97, ACM Press, (1997) 31-39

15. Sousa, J., Garlan, D.: Aura : an Architectural Framework for
User Mobility in Ubiquitous Computing Environments. In:
Proc. of IEEE-IFIP Conf. on Software Architecture (2002)

16. Streitz, N. et al.: i-LAND: An interactive Landscape for
Creativity and Innovation. In: Proc. of ACM Conf. on Human
Factors in Computing Systems CHI’99 (1999) 120–127

17. Tandler, P.: Software Infrastructure for Ubiquitous
Computing Environments: Supporting Synchronous
Collaboration with Heterogeneous Devices. In: Proc. of Conf.
on Ubiquitous Computing’01. LNCS vol. 2201. Springer-
Verlag, Berlin (2001) 96–115

18. Tandler, P. Prante, Th., Müller-Tomfelde, Th., Streitz, N.,
Steinmetz, R.: ConnecTables: Dynamic coupling of displays
for the flexible creation of shared workspaces. In: Proc. of
14th ACM Symp. on User Interface Software and Technology
UIST’01. ACM Press, 11–20

19. Vandervelpen, Ch., Coninx, K., Towards Model-Based
Design Support for Distributed User Interfaces. In: Proc. of
NordiCHI’2004. ACM Press, New York (2004)

20. Vandervelpen, Ch., Vanderhulst, K. Coninx, K., Light-weight
Distributed Web Interfaces: Preparing the Web for
Heterogeneous Environments, accepted for the 5th
International Conference on Web Engineering (ICWE'2005),
25-29 July 05 Sydney, Australia.

