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ABSTRACT 
This paper proposes a reference model for reasoning about 
different types of distributed User Interfaces (UI): 
mouldable, distributable, and migratable UIs. The reference 
model explicitly captures concepts subject to distribution at 
different levels of abstraction (tasks, concepts, abstract UI, 
concrete UI, and deployed UI) so as to provide designers 
with some guidance on deciding how to distribute the UI. 
Some significant types of distributed UI are uniformly 
expressed according to the reference model. 

Author Keywords 
Plasticity, . 

ACM Classification Keywords 
H5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  

INTRODUCTION 
With ubiquitous computing, User Interfaces (UI) are no 
longer confined in a unique desktop. Instead, they may be 
distributed and migrate across a dynamic set of interaction 
resources that are opportunistically composed, borrowed 
and lent. As a consequence of distribution and migration, 
UIs must be mouldable in order to adapt gracefully to 
changes of the interactive space. Typically, in [14], when 
the user “picks” graphical tables and chairs on a vertical 
surface and drops them on a horizontal surface, then the 
rendering of the furniture switches from a 3-D to a 2-D 
representation. Today, mouldable, distributed and 
migratable (MDM) UIs are studied under the umbrella of 
plasticity [1]. But there is still no clear definition of the 
moulding, distribution and migration phenomena. Many 
terms appear, stressing the feeling of an ontological 

confusion: for instance, migratory UIs [1, 3], mutable [13], 
transformable [7], reconfigurable [6], retargetable UIs [4], 
composition and decomposition [18]. 
In addition to that confusion, a need exists for consolidating 
this very recent branch of research dedicated to plastic UIs. 
Whilst a reference framework provides a sound basis for 
reasoning about plasticity at design time [4], there is no tool 
for characterizing and comparing systems at run time. 
Typically, considering the distribution criteria, several 
systems exist such as I-AM [5], i-Land [16], Stanford 
Interactive Mural [8], Aura [15], ConnecTables [17, 18], 
Dygimes [18], DistriXML [7]. But so far, no state of the art 
of these systems has been conducted and no reference 
framework has been proposed to better perceive the 
differences between these terms and systems. 

This paper proposes a reference model for reasoning about 
distributed UIs. It is based on A Meta-model of Interactive 
systems (AMIS) that describes an interactive system at 
different levels of abstraction ranging from tasks to 
deployment. AMIS is described in section 2. As explained 
in section 3, it provides a sound basis for reasoning about 
distribution. Some examples of functions and properties are 
elicited to characterize existing approaches in section 4. 
Further work includes the standardization of definitions 
(moulding, distribution and migration) based on AMIS 
(Sect. 5). 

AMIS: A META-MODEL OF INTERACTIVE SYSTEMS 
AMIS is a meta-model of interactive systems for describing 
the morphology of an interactive system at different levels 
of abstraction, ranging from the user tasks to its 
deployment. AMIS is a graph made of the physical and 
digital entities that are required for the definition and 
execution of the interactive system. 
The physical entities (PhysicalEntity on Fig. 1) encompass 
the computing resources (CPU), output devices (called 
Outputers on Fig. 1, e.g, screens, loudspeakers) and input 
devices (called Inputers on Fig 1., e.g. keyboards, mice, 
cameras) ) that are required for the execution of the 
interactive system. 

The digital entities (DigitalEntity on Fig. 1) embody both 
the “components” of the interactive system and their 
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mapping on the outputers (for their rendering) and inputers 
(for the user interaction). The “components” of an 
interactive system refer to either its functional core 
(DigitalFunctionalCore) or UI (DigitalUserInterface), both 
of them being connected through a connector 
(MappingUIFC). All of these elements (functional cores, 
UIs and mappings) are kinds of digital entities. Digital 
entities, inputers and outputers are managed by CPUs. 

Space is a key notion in both the physical and digital 
worlds. It basically defines a coordinates space according to 
the mathematical meaning. Typically, a digital window 
defines a 2-D digital space which origin may be its top-left 
corner, and which axis x and y may be oriented to the right 

and bottom directions. Spaces may be confined inside 
boundaries, as a result defining zones. Typically, in Human-
Computer Interaction (HCI), workspaces (also called 
interaction spaces or presentation units) are digital zones 
(DigitalZone) in which the interaction is supposed to take 
place. Symmetrically, outputers define physical zones 
(PhysicalZone). For instance, a screen may be seen as a 
parallelepiped which length, high and depth may be 
expressed in inches. 

Fig. 1 presents an UML class diagram gathering the 
concepts that have been introduced. AMIS is based on these 
concepts. 

   

Figure 1 : Basic concepts useful for meta-modeling the reference model. Left side is about the digital entities, right side about the 
physical entities and the middle about conceptual entities. The far right side focuses on the mappings, making explicit the entities 

they are based on. 

AMIS is a graph which: 
• nodes are the physical and digital entities useful for the 

definition and execution of the interactive system. For a 
better legibility, we propose graphical notations (i.e., a 
concrete syntax) for differentiating entities: functional 
cores, UIs and mappings are respectively depicted by 
octagons , ovals   and cylinders  . Outputers 
are represented by flat screens, inputers by keyboards or 
mice, CPUs by a surrounding box and other physical 
nodes by rectangles. 

• the relations may be of different types: “managed by” for 
expressing the fact that a digital entity (DE) is managed 
by a CPU (in that case, the DEs are represented inside a 
colored box denoting the CPU) ; “is defined with respect 
to” for expressing the fact that a space A is defined with 

respect to a space B (  A B ) ; “is functionally dependent 
of” for expressing the fact that a DE is functionally 
dependent of another one (dependentEntity  
referenceEntity) ; “is mapped on” for expressing the fact 
that a DE is mapped on an other DE 

(
Mapping

) ; “is replicated” for conveying 

multiple instanciations of a same DE (
Numeric 

Entity 
Numeric

Entity ). 
 
This meta-model is instantiated in Fig. 2, on the CamNote 
case study. CamNote is a powerpoint-like software made of 
a slides viewer and a controller. The controller is able to run 
both on PC and PDA. PDA is an interesting option for 

controlling the presentation in a remote way. The graph of 
CamNote is modeled in two configurations: (a) the slides 
viewer and the controller on a same PC; (b) the slides 
viewer on PC and the controller on PDA. 
• In both configurations, the functional core is made of two 

parts: the slides viewer (Viewer) and the remote 
controller (RemoteController FC). The RemoteController 
FC is either managed by the PC (a) or the PDA (b), 

• The functional cores and their UIs are linked together 
through mappings (Map_UI_FC), 

• In a), the desktop PC (Root) contains the slides viewer 
and the remote controller UIs. The desktop (root) is 
directly mapped on the PC screen: as a result, both of the 
components (slides viewer and remote controller) are 
displayed on the PC screen. In b), the desktop PC is 
limited to the slides viewer UI (Viewer), the remote 
controller UI being mapped on the PDA screen. As a 
result, the slides viewer appears on PC, whilst the remote 
controller is displayed on PDA. 

• In b), PC and PDA are connected through a network. 

(a)  
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(b)  

Figure 2 : The graph of CamNote when (a) both the slides 
viewer and the remote controller run on PC; (b) the slides 

viewer runs on PC whilst the remote controller runs on PDA. 
The models are instance diagrams of the class diagram 

presented in Fig. 1. The proposed graphical notations are used 
to improve the diagram legibility. 

In practice, the INTERACTIVE SYSTEM can be analyzed 
in a finer way. Considering the UIs, the desktop may be 
seen as a digital space in which the content of the UIs is 
expressed.  

 

Infos 

Infos

 

Figure 3 : The reference model is a powerful notion for 
reasoning about distribution. The way the UI is mapped on 

outputers defines the locations where the UI appears. 

In Fig 3. the UI is made of a unique window (A Window) 
structured into two workspaces: “WS Slide” for the slides 
presentation and “WS Infos” for a notes editor. Recursively, 
WS Slide and WS Infos define digital spaces for expressing 
their content. They are expressed with regard to the window 
digital space. In Fig. 3, WS Slide is limited to an image, 
whilst WS Infos contains labels and text boxes for editing 
both the current date and few comments. The mapping on 
outputers defines the “location” where the UI is displayed. 
In Fig. 3, the full desktop is projected on screen1 (CamNote 
plus other applications); the slides viewer is displayed on 
screen 2 whilst the notes editor appears on screen 3. 

Next section introduces a set of functions and properties 
that make operational this notion of reference model. 

FUNCTIONS AND PROPERTIES 
Many functions and properties may be introduced based on 
the reference model. In this paper, we focus on the 
functions and properties that are powerful for reasoning 
about MDM UIs. Functions and properties are defined, then 
“formalized” according to a pseudo-Z notation. They may 
be useful for defining distribution or migration whilst some 
are of general interest. This criteria is used for structuring 
the section. 

Functions of general interest 
A useful notion for MDM UIs is the notion of location. 
Informally, the location of a digital entity expresses its 
embodiment in terms of physical and digital entities. More 
formally, the location of a digital entity e is the set of 
quadruples <CPU, smo: set of MappingUI-O, smi: set of 
MappingUI-I; p: path of DigitalEntity > where: 
• p is a path in the graph going from e to CPU, 
• smo is the set of mappings to outputers involved in p, 
• smi is the set of mappings to inputers involved in p, 
• CPU is the CPU managing p. 
 
For instance, let us consider the “TextBox Date” in Fig. 3. 
Its location is based on a unique path p made of the 
following digital entities: TextBox Date-WS Date-WS 
Infos-A Window-Desktop-Root. Two mappings are 
involved (on screens 1 and 3) giving rise to the following 
location: {<CPU, {mapping screen 1, mapping screen 3}, 
{}, p>}. From now on, to make a clear distinction between 
a quadruple and the set of quadruples, a quadruple will be 
said elementaryLocation. 
Location is a powerful notion for reasoning in HCI. 
Typically, if the set of mappings on outputers is empty, then 
the entity can not be observable [10]. "Let us formally 
define some functions of general interest. They apply on a 
graph. 

• Replicas(e: DigitalEntity) computes the set of digital 
entities that replicate the entity e: {j: DigitalEntity | 
Replicas (e, j)∨Replicas (j, e) } where Replicas(i, j) is 
true if I is a replicas of j., 

• Locations(sui : set of UIs) computes the set of locations 
of sui. 

• GetOutputers(sui: set of UI) computes the set of 
outputers where sui could be rendered.  
∪{l: Locations(sui) • l.smo} 

• GetInputers(sui : set of UI)  computes the set of 
inputers that provide input to sui.  
∪{l: Locations(sui) • l.smi} 

• GetCPUs(sui : set of UI) computes the set of CPUs 
managing one ui among sui at least.  
{l: Locations(sui) • l.cpu} 

• LocationsWhereUIsRendered(sui : set of UI) computes 
the set of locations where sui is rendered.  
{<cpu, smo, smi, p>: Locations(sui) | smo’⊂ smo ∧ 
(∀o:smo’•IsRenderedOn(p,o)) • <cpu,smo’,smi,p>} 

• OutputersWhereUIsRendered(sui : set of UI) computes 
the set of outputers where sui is rendered.  
∪{l: LocationsWhereUIsRendered (sui) • l.smo} 

• LocationsWhereTasksRendered(st : set of tasks) 
computes the locations where st is rendered. It provides 
a higher level of information about the interactive 
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system. 
sui = ∪{m: {mt:Map_Tasks-UI | m.st∩st≠∅}•m.sui} 
→ LocationsWhereUIsRendered(sui) 

Based on some of these functions, next sections introduces 
a new function, valuable for reasoning about distribution 

Useful functions for reasoning about distribution 
Distribution has several meanings among which one is 
about scattering. We define the Are_X_Scattered for 
measuring the extent to which extent a set of digital UIs is 
scattered according to an X criteria: CPU, screens, etc. The 
degree of scattering may be null, weak, medium or strong. 
Let us examine this range of values on an example (the 
screen scattering) before providing general formalizations. 

• Strong scattering means that there is no screen shared by 
two digital UI, 

• Medium scattering means that there is no digital UI using 
exactly the same screens than another one, 

• Weak scattering means that, at least, two digital UIs 
differ in the screens they use. 

For example, the set of entities “Image” and “Label 
comments” on Fig. 3 is medium scattered. Indeed: 

• Image is mapped on two outputers {screen 1, screen 2}, 
• Comments is mapped on two outputers {screen 1, screen 

3}, 
• Screen 1 is shared by the two entities, scattering is not 

strong. 
More formally;  
  Are_X_Scattered (sui: set of UI; 
     fct: (set of X) f (sui: set of UI)) 
                ssx: set of <DigitalEntity, set of X> |  
         ssx={ui: sui • <ui, fct({ui})>} • α where:  

• sui is the set of digital UIs which scattering is studied. 
For instance, { Image, Label comments }, 

• fct(sui) returns the set of X involved in the location of 
sui. For instance, {screen 1, screen 2} for the ui Image 
and X = “screen”, 

• ssx is the set of couples <ui, getX(ui)>, obtained by 
considering all the uis of sui. For instance, {<Image, 
{screen 1, screen 2}>, <Label comments, {screen 2, 
screen 3}>}, 

• α expresses the strength of the scattering. It may be: 
o Strong:   α ≡ (¬∃s1,s2: SSX | s1.sx∩s2.sx≠∅) 
o Medium: α ≡ (¬∃s1,s2 : SSX | s1≠s2 • s1.sx=s2.sx) 
o Weak:     α ≡ (∃s1,s2 : SSX | s1.sx≠s2.sx). 

Next section introduces functions and properties operating 
on a set of reference models. These functions and properties 
are useful for reasoning about migration. 

Useful functions for reasoning about migration 
Many functions and properties could be defined. As an 
example, let us introduce the LeaveAndGet function that 
elicits the elementary locations a digital entity leaves and 
conversely gets when arriving in a new graph. 
LeaveAndGet(sui: set of DigitalUI; G1, G2 : Graph) 
returns a couple <lost, won> where lost and won 
respectively denote the elementary locations the entity has 
lost and won. More formally: L1: G1.location(sui), L2: 
G2.location(sui) 

<{l1: L1 | l1=<cpu1, sm1, w1>  
          ∧ (¬∃l2: L2 | l2=<cpu1,sm2,w1>∧sm1⊆sm2)• l1} 
, {l2: L2 | l2=<cpu2, sm2, w2> 
          ∧ (¬∃l1: L1 | l1=<cpu2,sm1,w2>∧sm2⊆sm1)• l2}>. 

Next section applies most of functions and properties on 
case studies extracted from the literature. 

ILLUSTRATIONS ON THE STATE OF THE ART 
The state of the art is structured according to the what (UIs 
or tasks) and where (CPU, outputers, UIs), the distribution 
or migration is performed.  

Distributing UIs on UIs 
A typical example is multiple views. Multiple views refer to 
the visualization of a UI on different UIs. Fig. 4 is an 
example of an image factorized on two windows. This 
notion can be formalized in the following way: 

Is_UI_distributed_on_UIs (ui : UI) 
     L : Locations(ui) 
     → #L≠0 

Label 
1 

  Window 1 

  Window 2 

Label 
2  

Figure 4 : Image is distributed on window 1 and window 2. 

Migrating UIs on UIs 
A typical example is the transfer of a part of the content of 
a window to another window. Fig 5 illustrates the transition 
of an image passing from window 1 to window 2. This 
notion can be formalized in the following way: 

 Migration (ui : UI; G1, G2 : graph) 
    <leave, get> : LeaveAndGet({ui}, G1, G2) 
    →  (#leave≠0)∧(#get≠0) 
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Label 
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  Window 1 

  Window 2 

 
Label 

2 
          

Label 1 
  Window 1 

  Window 2 

Label 
2  

Figure 5 : Image migrate from window 1 to window 2. 

Distributing UIs on outputers 
A typical example is “multiple screens”. Multiple screens 
refers to the addition of screens for extending the display 
surface. The UI is not changed, but it can be mapped in 
different ways. Fig. 6 models the availability of a second 
screen. The mapping on this new outputer can be performed 
in different ways, therefore providing different kinds (and 
feelings) of distribution. Distributions may range from a 
full replication (exactly, the same rendering on both 
screens) to a strong scattering (one part of the UI on one 
screen, the rest on the second one). If we mean by 
distributed that a UI is rendered on different outputers then 
this notion can be formalized in the following way: 

  Distributed_UI_O(sui : set of UIs) 
  → #OutputersWhereUIsRendered(sui) >1 

 

Figure 6 : An example of graph involving multiple screens. 

Migrating UIs on outputers 
This can be understood in at least two ways; The UI 
becomes renderable on another outputer or the UI becomes 
rendered on another outputer. Let’s formalize the two 
cases. 

UI become displayable on another UI. 
 Migration_UI_O_1(ui : UI ; G1, G2 : Graph) 
    SO1 = G1.GetOutputers({ui}) 
    SO2 = G2.GetOutputers({ui}) 
    → <SO1 \ SO2 ; SO2 \ SO1> 

UI become displayed on another UI. 
 Migration_UI_O_2(ui : UI ; G1, G2 : Graph) 
    SO1 = G1.OutputersWhereUIsRendered({ui}) 
    SO2 = G2.OutputersWhereUIsRendered({ui}) 
    → <SO1 \ SO2 ; SO2 \ SO1> 

Distributing/Migrating UIs on CPUs 
Typical cases of distributed/migrated Uis on CPUs are I-
AM and Beach 

I-AM (Interaction Abstract Machine) [12] is a platform 
manager for MDM UIs. It supports the dynamic 
configuration of interaction resources to form a single 
logical interactive space. These resources can be managed 
by different elementary workstations running distinct 
operating systems (i.e., MacOS X, Windows NT and XP). 
Users can distribute and migrate user interfaces at the pixel 
level as if these UIs were handled by a single computer. 
This illusion of a unified space is provided at no extra cost 
for the developer who can re-use the conventional GUI 
programming paradigm.  

The underlying principle of I-AM is to create the UI on an 
I-AM server, and replicate it on each I-AM client. Fig. 7 
makes this principle explicit thanks to the reference model. 
The universe embeds a model of the topology of the 
surfaces. 

In I-AM, an UI is said distributed if it is displayed on at 
least two surfaces managed by different CPUs. This can be 
expressed by the following Distribution(ui: DigitalUI) 
function. It returns the set of elementary locations of ui that 
involve different CPUs. The UI will be said distributed if 
this set is not empty. 

  L=LocationsWhereUIRendered (ui)) 
  → ∃ l1, l2 : L | l1.cpu≠l2.cpu) 

In I-AM, an UI is said to migrate when it leaves a set of 
screens S1 to target a set of screens S2, such as S1∩S2=∅. 
This can be expressed by the following: 

Migration(ui1,ui2: DigitalUI; G1, G2: Graph)  
   L1 = G1.LocationsWhereUIsRendered({ui1})  
   L2 = G2.LocationsWhereUIsRendered({ui2}) 
   → (L1≠∅) ∧ (∀l2: L2 • ¬(∃l1 :L1| l1.cpu=l2.cpu)) 

 

Figure 7 : An I-AM characterization based on reference 
model. The UI is created on a server (CPU2) and replicated on 

each client (only one in the figure 1 - CPU 1). 

Another example of UI distributed or migrated on CPUs is 
given by Beach. Beach [16] has been developed in order to 
support roomware application. In addition to a local object 
space on each platform containing all non-distributed 
object, Beach is based on COAST for the management of 
shared objects. Fig. 8 characterizes Beach on the 
Wall&Chair example. The Wall&Chair roomware is 
composed of a wall-screen (DW for DynaWall) and a 
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tablet-PC on a chair (CC). Both render the same application 
but the tablet-PC also renders another one, making it 
possible for the user to have a private space. 

The distribution occurring in beach consists in the 
replication of shared elements on a server. The distribution 
is effective when a UI is replicated on different CPUs, 
witch can be formalized by the following function 
Distribution_Beach_UI_CPU (sui : set of UIs) : 

  #getCPUs(sui) > 1 

 

Figure 8 : Beach illustrated on the Wall&Chair case study. 

Distributing Task on outputs/CPU 
Knowing which tasks of an interactive system are supported 
by which CPUs and/or outputers provides a high level of 
knowledge of the deployment of the INTERACTIVE 
SYSTEM [20]. An example is given in Fig 9: the task 
model of a basic text editor is deployed on two CPUs. One 
of them achieve the tool selection whilst the other one 
achieves tool application and text edition. The task “Editing 
textual document” is then distributed on this two CPUs. 
Knowing weather a set of tasks is distributed on outputers 
can be formalized in the following way: 

AreTasksDistributedOnOutputers (st : set of Tasks) 
   smUI = {m : MapTasksUI | (∃t : st | t∈m.Tasks) • m} 
   sUI = ∪{m : smUI • m.UIs} 
   so = ∪{ui : sUI • OutputersWhereUIsRendered({ui})} 
   → #so > 1 

 

Figure 9 : Tasks distributed on different computers. 

 

Migrating tasks on another CPU/UI 
A typical example of this kind of migration is Aura. In Aura 
[15], the adaptation to the context of use is performed by 
substituting one application (e.g., a text editor) by another 
one. Fig. 10 provides an example based on a text editor. 
The user edits a text using word on his work’s computer 
(G1). He then decides to go back home. When arriving in 
front of his home’s computer, the system launches emacs, 
which is the equivalent software he has to perform text 
edition (G2). We can notice that in G1 the task distribution 
on the UIs is more precise than in G2. However the whole 
task tree is mapped to UIs in both G1 and G2. Such a 
migration of tasks from/to UI can be formalized in the 
following way: 

 MigrationAura(st: set of tasks; G1, G2: Graph) 
    sm1 = {m: G1.sm | st∩m.st≠∅ • m} 
    sm2 = {m: G2.sm | st∩m.st≠∅ • m} 
    → {m1:sm1, m2:sm2 | m1.st=m2.st ∧ 
m1.sui≠m2.sui • <m1.st, m1.sui, m2.sui>} 

This function returns a set of triples <st, sui1, sui2> where 
st is the set of tasks being migrated form sui1 in G1 to sui2 
in G2. 

 

Figure 10 : The change of graph in Aura: Word is substituted 
by Emacs.  
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Distributing Inputs 
Distributing inputs could mean several things. In I-AM, 
“distributing inputs” means replicating every input on every 
CPU. Thus it makes it possible to control a window of a 
CPU with the mouse linked to another CPU.(Fig. 11) 

 

Figure 11 : Exemple of distribution of inputs in IAM. Each 
inputer is replicated on every CPU. 

In Synergy, “distributing inputs” means that every input 
device of the same type (e.g. mouse, keyboards…), controls 
the same “logical input”. For example, this system makes it 
possible to control the mouse cursor of a PC with a mouse 
device connected to a MAC. PC cursor and MAC cursor are 
superposed, giving thus the illusion that it is the same. (Fig 
12.) 

 

Figure 12 : Example of distribution in Synergy; Keyboard and 
mouse devices are respectively connected to the same 

conceptual keyboard and mouse driver. 

Migrating Inputs 
Migrating inputs can mean making possible for an input 
device to act on a UI managed by another CPU than the one 
managing the device. Fig. 13 shows an example. In G1, the 
keyboard is managed by CPU1, and acts on Root 1 only. In 
G2, by transferring the keyboard driver information to 
Root1 and Root2, the keyboard migrates to CPU2. 

 

Figure 13 : Exemple of a migration of a keyboard to another 
computer 

 

5   CONCLUSION AND PERSPECTIVES 
This paper introduces a reference model as a powerful tool 
for reasoning about different kinds of distributed UIs. 
Based on a set of examples, it shows how this reference 
framework could help in formalizing different kinds of 
distribution and migration. The claim of the paper was not 
to introduce new definitions, but to show how this notion 
helps in characterizing existing systems, and envisioning 
the problem space of MDM. One perspective of the work is 
of course the standardization of the definitions. 
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